ABSTRACT
As COVID-19 spread worldwide, many major grain-producing countries have adopted measures to restrict their grain exports; food security has aroused great concern from various parties. How to improve grain production has become one of the most important issues facing all countries. However, crop diseases are a difficult problem for many farmers so it is important to master the severity of crop diseases timely and accurately to help staff take further intervention measures to minimize plants being further infected. In this project, a restructured residual dense network was proposed for tomato leaf disease identification; this hybrid deep learning model combines the advantages of deep residual networks and dense networks, which can reduce the number of training process parameters to improve calculation accuracy as well as enhance the flow of information and gradients. The original RDN model was first used in image super resolution, so we need to restructure the network architecture for classification tasks through adjusted input image features and hyper parameters. The restructured residual dense network model can obtain significant improvements over most of the state-of-the-art models in crop leaf identification, as well as requiring less computation to achieve high performance.