SOLAR PV ENERGY GENERATION SYSTEM INTERFACED TO THREE PHASE GRID WITH IMPROVED POWER QUALITY

Abstract

This project proposes a multipurpose DS (Distributed Sparse) control approach for a single stage solar photovoltaic (PV) energy generation system (SPEGS). This SPEGS is interfaced here to the three phase grid at varying solar irradiance and compensating the nonlinear load tied at point of common interconnection. The SPEGS performs multitasks. It feeds the generated solar PV power to the local three phase grid. It reduces the harmonics of loads and furnished balanced currents of local three-phase grid. The SPEGS uses a solar PV array, a voltage source converter, a nonlinear load, a three phase grid, DC-link capacitance. In case, when the solar irradiance is not available, the proposed system works as DSTATCOM (Distribution Static Compensator) by utilizing same VSC (Voltage Source Converter). For extracting maximum power from the PV source, the traditional P&O (Perturb and Observe) scheme is utilized here. The tracking performance and efficiency of P&O technique are also examined here at rapid changing climatic conditions to show behavior of P&O scheme. The DS control approach is capable to estimate required fundamental component to find out reference grid currents. The proposed control approach is validated on a developed prototype in the laboratory.

Let's Talk