MODELING AND ANALYSIS OF PELTON WHEEL BUCKET

Abstract

ABSTRACT

A Pelton-wheel impulse turbine is a hydro mechanical energy conversion device which converts gravitational energy of elevated water into mechanical work. This mechanical work is converted into electrical energy by means of running an electrical generator. The Pelton turbine was performed in high head and low water flow, in establishment of micro-hydroelectric power plant, due to its simple construction and ease of manufacturing. To obtain a Pelton hydraulic turbine with maximum efficiency during various operating conditions, the turbine parameters must be included in the design procedure. Here all design parameters were calculated at maximum efficiency by using MATLAB SOFTWARE. These parameters included turbine power, turbine torque, runner diameter, runner length, runner speed, bucket dimensions, number of buckets, nozzle dimension and turbine specific speed. The main focus was to design a Pelton Turbine bucket and check its suitability for the pelton turbine. The literature on Pelton turbine design available is scarce; this work exposes the theoretical and experimental aspects in the design and analysis of a Pelton wheel bucket, and hence the designing of Pelton wheel bucket using the standard rules. The bucket is designed for maximum efficiency. The bucket modelling and analysis was done by using SOLIDWORKS 2015. The material used in the manufacture of pelton wheel buckets is studied in detail and these properties are used for analysis. The bucket geometry is analysed by considering the force and also by considering the pressure exerted on different points of the bucket. The bucket was analysed for the static case and the results of Vonmises stress, Static displacement and Factor of safety are obtained.

Let's Talk