A NOVEL LOW-DOSE DUAL-ENERGY IMAGING METHOD FOR A FAST-ROTATING GANTRY-TYPE CT SCANNER

Abstract

ABSTRACT

CT scan by use of a beam-filter placed between the x-ray source and the patient allows a singles can low-dose dual-energy imaging with a minimal hardware modification to the existing CT systems. We have earlier demonstrated the feasibility of such imaging method with a multi-slit beam-filter reciprocating along the direction perpendicular to the CT rotation axis in a cone-beam CT system. However, such method would face mechanical challenges when the beam-filter is supposed to cooperate with a fast-rotating gantry in a diagnostic CT system. In this project, we propose a new scanning method and associated image reconstruction algorithm that can overcome these challenges. We propose to slide a beam-filter that has multi-slit structure with its slits being at a slanted angle with the CT gantry rotation axis during a scan. A streaky pattern would show up in the sinogram domain as a result. Using a notch filter in the Fourier domain of the sinogram, we removed the streaks and reconstructed an image by use of the filtered-back projection algorithm. The remaining image artifacts were suppressed by applying l0 norm based smoothing. Using this image as a prior, we have reconstructed low- and high-energy CT images in the iterative reconstruction framework. An image-based material decomposition then followed. We conducted a simulation study to test its feasibility using the XCAT phantom and also an experimental study using the Catphan phantom, a head phantom, an iodine-solution phantom, and a monkey in anesthesia, and showed its successful performance in image reconstruction and in material decomposition.

Let's Talk